Willems' fundamental lemma for nonlinear systems with Koopman linear embedding

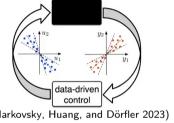
¹Xu Shang, ²Jorge Cortés, ¹Yang Zheng

¹Department of Electrical and Computer Engineering, University of California San Diego

 $^{\rm 2}$ Department of Mechanical and Aerospace Engineering, University of California San Diego

ACC 2025

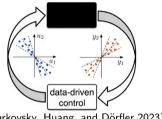
Key insight of data-driven control: Data \rightarrow Model + Error \rightarrow Control.



(Markovsky, Huang, and Dörfler 2023)

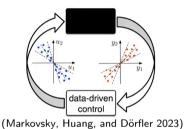
Key insight of data-driven control: Data \rightarrow Model + Error \rightarrow Control.

Linear representation:



(Markovsky, Huang, and Dörfler 2023)

 $\textbf{Key insight of data-driven control: } \mathsf{Data} \to \mathsf{Model} + \mathsf{Error} \to \mathsf{Control}.$

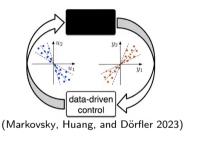


Linear representation:

Parametric model: Koopman operator theorem

 → Koopman model predictive control
 (Koopman 1931; Korda and Mezić 2018)

Key insight of data-driven control: $\mathsf{Data} \to \mathsf{Model} + \mathsf{Error} \to \mathsf{Control}.$



Linear representation:

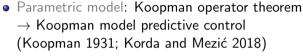
- Parametric model: Koopman operator theorem

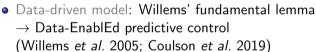
 → Koopman model predictive control
 (Koopman 1931; Korda and Mezić 2018)
- Data-driven model: Willems' fundamental lemma

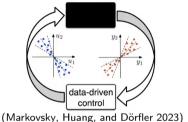
 → Data-EnablEd predictive control
 (Willems et al. 2005; Coulson et al. 2019)

 $\textbf{Key insight of data-driven control: } \mathsf{Data} \to \mathsf{Model} + \mathsf{Error} \to \mathsf{Control}.$

Linear representation:







(a) Connected vehicles (Wang et al. 2023)

(b) Soft robots (Haggerty et al. 2023)

Consider a discrete-time nonlinear system

$$x_{k+1} = f(x_k, u_k),$$

 $y_k = g(x_k, u_k),$ (1)

where $x_k \in \mathbb{R}^n$, $u_k \in \mathbb{R}^m$ and $y_k \in \mathbb{R}^p$ are the state, input, and output of the system.

Consider a discrete-time nonlinear system

$$x_{k+1} = f(x_k, u_k),$$

 $y_k = g(x_k, u_k),$
(1)

where $x_k \in \mathbb{R}^n$, $u_k \in \mathbb{R}^m$ and $y_k \in \mathbb{R}^p$ are the state, input, and output of the system.

Key problem: The linear representation is generally inaccurate for nonlinear systems.

Consider a discrete-time nonlinear system

$$x_{k+1} = f(x_k, u_k),$$

 $y_k = g(x_k, u_k),$
(1)

where $x_k \in \mathbb{R}^n$, $u_k \in \mathbb{R}^m$ and $y_k \in \mathbb{R}^p$ are the state, input, and output of the system.

Key problem: The linear representation is generally inaccurate for nonlinear systems.

Can we construct an accurate linear model for a specific class of nonlinear systems?

Consider a discrete-time nonlinear system

$$x_{k+1} = f(x_k, u_k),$$

 $y_k = g(x_k, u_k),$
(1)

where $x_k \in \mathbb{R}^n$, $u_k \in \mathbb{R}^m$ and $y_k \in \mathbb{R}^p$ are the state, input, and output of the system.

Key problem: The linear representation is generally inaccurate for nonlinear systems.

Can we construct an accurate linear model for a specific class of nonlinear systems?

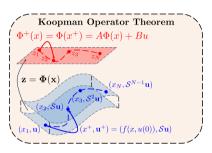
Goal: Construct an accurate linear representation for the unknown nonlinear system that admits an accurate Koopman linear model from data.

Data-driven Representation via Koopman Operator Theorem

Key idea: Lift state x_k of nonlinear system to a high-dimensional space

Definition 1 (Koopman linear embedding)

There exist a set of lifting functions (observables) $\Phi(x_k) := \operatorname{col}(\phi_1(x_k), \dots, \phi_{n_z}(x_k)) \in \mathbb{R}^{n_z}$, which propagates linearly along trajectories of the nonlinear system (1).

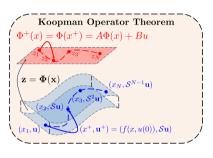


Data-driven Representation via Koopman Operator Theorem

Key idea: Lift state x_k of nonlinear system to a high-dimensional space

Definition 1 (Koopman linear embedding)

There exist a set of lifting functions (observables) $\Phi(x_k) := \operatorname{col}(\phi_1(x_k), \dots, \phi_{n_z}(x_k)) \in \mathbb{R}^{n_z},$ which propagates linearly along trajectories of the nonlinear system (1).



- Let $z_k = \Phi(x_k) \in \mathbb{R}^{n_z}$, the Koopman (parametric) linear model is $z_{k+1} = Az_k + Bu_k$, $y_k = Cz_k + Du_k$. (2)
- Given x_{ini} , we can obtain $z_{\text{ini}} = \Phi(x_{\text{ini}})$.

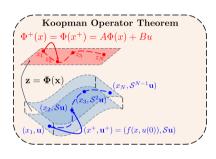
(ロ > 4 個 > 4 差 > 4 差 > 差 9 9 0 0 c

Data-driven Representation via Koopman Operator Theorem

Key idea: Lift state x_k of nonlinear system to a high-dimensional space

Definition 1 (Koopman linear embedding)

There exist a set of lifting functions (observables) $\Phi(x_k) := \operatorname{col}(\phi_1(x_k), \dots, \phi_{n_z}(x_k)) \in \mathbb{R}^{n_z},$ which propagates linearly along trajectories of the nonlinear system (1).



• Let
$$z_k = \Phi(x_k) \in \mathbb{R}^{n_z}$$
, the Koopman (parametric) linear model is $z_{k+1} = Az_k + Bu_k, \quad y_k = Cz_k + Du_k.$ (2)

• Given x_{ini} , we can obtain $z_{\text{ini}} = \Phi(x_{\text{ini}})$.

There does not exist a systematic way to select lifting functions.

Xu Shang (UC San Diego)

2025

4/16

Willems' Fundamental Lemma

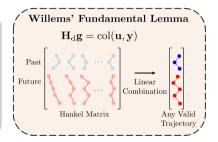
Willems' fundamental lemma is established for linear time-invariant (LTI) system

$$x_{k+1} = A_1 x_k + B_1 u_k, \quad y_k = C_1 x_k + D_1 u_k.$$
 (3)

Lemma 1 (Willems' fundamental lemma)

A length-L input-output data sequence col(u, y) is a valid trajectory of (3) if and only if there exists g such that $H_{dg} = col(u, y)$,

for rich enough H_d.



Willems' Fundamental Lemma

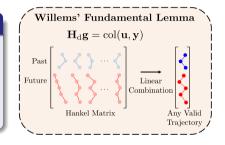
Willems' fundamental lemma is established for linear time-invariant (LTI) system

$$x_{k+1} = A_1 x_k + B_1 u_k, \quad y_k = C_1 x_k + D_1 u_k.$$
 (3)

Lemma 1 (Willems' fundamental lemma)

A length-L input-output data sequence col(u, y) is a valid trajectory of (3) if and only if there exists g such that $H_{dg} = col(u, y)$.

for rich enough H_d.



• Suppose we have (u_{ini}, y_{ini}) with length T_{ini}

$$u_{1:T_{\mathsf{ini}}} = u_{\mathsf{ini}}, \ y_{1:T_{\mathsf{ini}}} = y_{\mathsf{ini}} \quad \Rightarrow \quad H_{\mathsf{d}}g = \mathsf{col}(u_{\mathsf{ini}}, y_{\mathsf{ini}}, u_{\mathsf{F}}, y_{\mathsf{F}}).$$

(ロ > 4 個 > 4 差 > 4 差 > 差 9 9 0 0 c

Willems' Fundamental Lemma

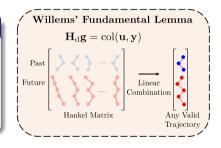
Willems' fundamental lemma is established for linear time-invariant (LTI) system

$$x_{k+1} = A_1 x_k + B_1 u_k, \quad y_k = C_1 x_k + D_1 u_k.$$
 (3)

Lemma 1 (Willems' fundamental lemma)

A length-L input-output data sequence col(u, y) is a valid trajectory of (3) if and only if there exists g such that $H_dg = col(u, y)$.

for rich enough H_d.



• Suppose we have (u_{ini}, y_{ini}) with length T_{ini}

$$u_{1:T_{\text{ini}}} = u_{\text{ini}}, \ y_{1:T_{\text{ini}}} = y_{\text{ini}} \quad \Rightarrow \quad H_{\text{d}}g = \text{col}(u_{\text{ini}}, y_{\text{ini}}, u_{\text{F}}, y_{\text{F}}).$$

The Willems' fundamental lemma can only be directly applied for LTI systems.

Xu Shang (UC San Diego) 2025 5/16

Motivation

Observations:

Koopman operator theorem:
 Nonlinear system → Linear system
 High-dimensional state space, same input and output.

Willems' fundamental lemma:
 Unknown linear system → Data-driven model
 Directly using input-output trajectories.

Motivation

Observations:

Koopman operator theorem:

Nonlinear system \rightarrow Linear system High-dimensional state space, same input and output.

• Willems' fundamental lemma:

Unknown linear system \rightarrow Data-driven model Directly using input-output trajectories.

Key insight:

Unknown nonlinear system \Rightarrow Unknown linear system \Rightarrow Data-driven model

Motivation

Observations:

Koopman operator theorem:

Nonlinear system \rightarrow Linear system High-dimensional state space, same input and output.

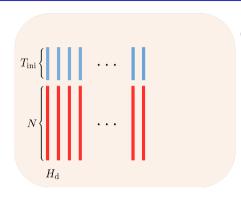
• Willems' fundamental lemma:

Unknown linear system \rightarrow Data-driven model Directly using input-output trajectories.

Key insight:

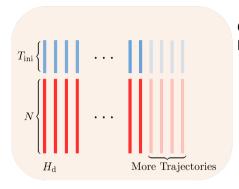
Unknown nonlinear system \Rightarrow Unknown linear system \Rightarrow Data-driven model

No need to choose lifting functions and the data-driven linear model is accurate.



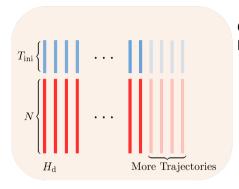
Given: initial trajectory (T_{ini}), trajectory library H_d .

Predict: length-*N* future trajectory.



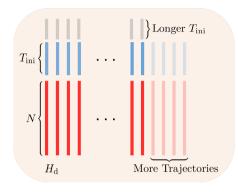
Given: initial trajectory (T_{ini}), trajectory library H_d . **Predict:** length-N future trajectory.

 Benefits of collecting more trajectories are well-recognized.



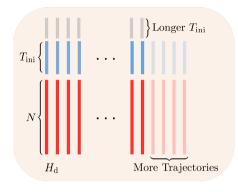
Given: initial trajectory (T_{ini}), trajectory library H_d . **Predict:** length-N future trajectory.

 Benefits of collecting more trajectories are well-recognized.



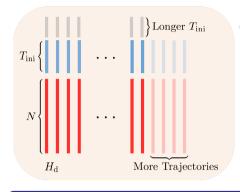
Given: initial trajectory (T_{ini}), trajectory library H_d . **Predict:** length-N future trajectory.

- Benefits of collecting more trajectories are well-recognized.
- Importance of extending initial trajectory is overlooked.



Given: initial trajectory (T_{ini}), trajectory library H_d . **Predict:** length-N future trajectory.

- Benefits of collecting more trajectories are well-recognized.
- Importance of extending initial trajectory is overlooked.



Given: initial trajectory (T_{ini}), trajectory library H_d . **Predict:** length-N future trajectory.

- Benefits of collecting more trajectories are well-recognized.
- Importance of extending initial trajectory is overlooked.

Main result

Suppose trajectory library H_d is rich enough and $T_{\text{ini}} \ge n_z$. The col $(u_{\text{ini}}, y_{\text{ini}}, u_F, y_F)$ is a valid trajectory of nonlinear system if and only if it is in the range space of H_d .

(ロ > 4 個 > 4 差 > 4 差 > 差 9 9 0 0 c

Behavior Spaces

Trajectory Spaces of nonlinear system and Koopman linear model:

$$\mathcal{B}_{\mathsf{NL}} = \left\{ \begin{bmatrix} u \\ y \end{bmatrix} \mid \exists \, x(0) = x_0 \in \mathbb{R}^n, \text{ nonlinear system dynamics holds} \right\},$$

$$\mathcal{B}_{\mathsf{K}} = \left\{ \begin{bmatrix} u \\ y \end{bmatrix} \mid \exists \, z(0) = z_0 \in \mathbb{R}^{n_z}, \text{ Koopman linear embedding holds} \right\}.$$

Key insight:

- 1) Willems' fundamental lemma is valid for Koopman linear model, $\operatorname{range}(H_d) = \mathcal{B}_K$.
- 2) Behavior space of the Koopman model is larger than nonlinear system, $z_0 = \Phi(x_0)$.

Behavior Spaces

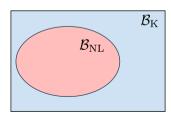
Trajectory Spaces of nonlinear system and Koopman linear model:

$$\mathcal{B}_{\mathsf{NL}} = \left\{ \begin{bmatrix} u \\ y \end{bmatrix} \mid \exists \, x(0) = x_0 \in \mathbb{R}^n, \text{ nonlinear system dynamics holds} \right\},$$

$$\mathcal{B}_{\mathsf{K}} = \left\{ \begin{bmatrix} u \\ y \end{bmatrix} \mid \exists \, z(0) = z_0 \in \mathbb{R}^{n_z}, \text{ Koopman linear embedding holds} \right\}.$$

Key insight:

- 1) Willems' fundamental lemma is valid for Koopman linear model, $\operatorname{range}(H_d) = \mathcal{B}_K$.
- 2) Behavior space of the Koopman model is larger than nonlinear system, $z_0 = \Phi(x_0)$.



10 / 16

Behavior Spaces

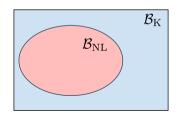
Trajectory Spaces of nonlinear system and Koopman linear model:

$$\mathcal{B}_{\mathsf{NL}} = \left\{ \begin{bmatrix} u \\ y \end{bmatrix} \mid \exists x(0) = x_0 \in \mathbb{R}^n, \text{ nonlinear system dynamics holds} \right\},$$

$$\mathcal{B}_{\mathsf{K}} = \left\{ \begin{bmatrix} u \\ y \end{bmatrix} \mid \exists z(0) = z_0 \in \mathbb{R}^{n_z}, \text{ Koopman linear embedding holds} \right\}.$$

Key insight:

- 1) Willems' fundamental lemma is valid for Koopman linear model, $\operatorname{range}(H_d) = \mathcal{B}_K$.
- 2) Behavior space of the Koopman model is larger than nonlinear system, $z_0 = \Phi(x_0)$.



- Only trajectories from nonlinear system are available, *i.e.*, columns of H_d from \mathcal{B}_{NL} .
- The $col(u, y) \in \mathcal{B}_{\mathsf{K}}$ is a necessary condition for $col(u, y) \in \mathcal{B}_{\mathsf{NL}}$.

Behavior Spaces Characterization & Construction

Theorem 1

Suppose
$$H_d := \begin{bmatrix} u_d^1 & \dots & u_d^l \\ y_d^1 & \dots & y_d^l \end{bmatrix}$$
 formed by I trajectories from \mathcal{B}_{NL} satisfies lifted excitation, i.e., $H_K := \begin{bmatrix} u_d^1 & \dots & u_d^l \\ \Phi(x_0^1) & \dots & \Phi(x_0^l) \end{bmatrix}$ has full row rank. Then, we have $\operatorname{range}(H_d) = \mathcal{B}_K$.

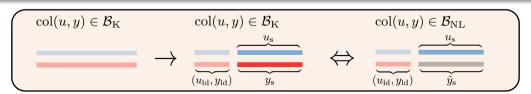
Behavior Spaces Characterization & Construction

Theorem 1

Suppose
$$H_d := \begin{bmatrix} u_d^1 & \dots & u_d^l \\ y_d^1 & \dots & y_d^l \end{bmatrix}$$
 formed by I trajectories from \mathcal{B}_{NL} satisfies lifted excitation, i.e., $H_K := \begin{bmatrix} u_d^1 & \dots & u_d^l \\ \Phi(x_0^1) & \dots & \Phi(x_0^l) \end{bmatrix}$ has full row rank. Then, we have $\operatorname{range}(H_d) = \mathcal{B}_K$.

Theorem 2

Let $col(u, y) \in \mathcal{B}_K$. Then, $col(u, y) \in \mathcal{B}_{NL}$ if and only if its leading sequence of length- n_z (i.e., $col(u_{ld}, y_{ld})$) is a valid trajectory of the nonlinear system.



Xu Shang (UC San Diego) 2025 11/16

Data-driven Representation of Nonlinear Systems

Theorem 3

Suppose trajectory library H_d satisfies lifted excitation and $col(u_{ld}, y_{ld}) \in \mathcal{B}_{NL}$, $(T_{ld} \ge n_z)$. The sequence $col(u_{ld}, y_{ld}, u_s, y_s)$ is a valid trajectory of nonlinear system if and only if there exists g such that $H_dg = col(u_{ld}, y_{ld}, u_s, y_s)$.

Data-driven Representation of Nonlinear Systems

Theorem 3

Suppose trajectory library H_d satisfies lifted excitation and $col(u_{ld}, y_{ld}) \in \mathcal{B}_{NL}$, $(T_{ld} \ge n_z)$. The sequence $col(u_{ld}, y_{ld}, u_s, y_s)$ is a valid trajectory of nonlinear system if and only if there exists g such that $H_dg = col(u_{ld}, y_{ld}, u_s, y_s)$.

Remark 1

We require no additional information as we can let

$$u_{\rm ld} = u_{\rm ini}, \ y_{\rm ld} = y_{\rm ini}, \ u_{\rm s} = u_{\rm F}, \ y_{\rm s} = y_{\rm F},$$
 (5)

in predicting the future output trajectory of the nonlinear system.

Data-driven Representation of Nonlinear Systems

Theorem 3

Suppose trajectory library H_d satisfies lifted excitation and $col(u_{ld}, y_{ld}) \in \mathcal{B}_{NL}$, $(T_{ld} \ge n_z)$. The sequence $col(u_{ld}, y_{ld}, u_s, y_s)$ is a valid trajectory of nonlinear system if and only if there exists g such that $H_dg = col(u_{ld}, y_{ld}, u_s, y_s)$.

Remark 1

We require no additional information as we can let

$$u_{\rm ld} = u_{\rm ini}, \ y_{\rm ld} = y_{\rm ini}, \ u_{\rm s} = u_{\rm F}, \ y_{\rm s} = y_{\rm F},$$
 (5)

in predicting the future output trajectory of the nonlinear system.

Theorem 3 provides an accurate data-driven linear representation.

- Requires no prior knowledge of the nonlinearity or suitable observables;
- Illustrates the importance of increasing the width and depth of the trajectory library.

< ロ ト → 同 ト → ヨ ト → ヨ ・ りへ(^)

Numerical Simulations

We consider the following nonlinear system

$$\begin{bmatrix} x_{1,k+1} \\ x_{2,k+1} \end{bmatrix} = \begin{bmatrix} 0.99x_{1,k} \\ 0.9x_{2,k} + x_{1,k}^2 + x_{1,k}^3 + x_{1,k}^4 + u_k \end{bmatrix}.$$

Choose the lifted state as $z := col(x_1, x_2, x_1^2, x_1^3, x_1^4)$, leading to:

$$z_{k+1} = \begin{bmatrix} 0.99 & 0 & 0 & 0 & 0 \\ 0 & 0.9 & 1 & 1 & 1 \\ 0 & 0 & 0.99^2 & 0 & 0 \\ 0 & 0 & 0 & 0.99^3 & 0 \\ 0 & 0 & 0 & 0 & 0.99^4 \end{bmatrix} z_k + \begin{bmatrix} 0 \\ 1 \\ 0 \\ 0 \\ 0 \end{bmatrix} u_k,$$

<□ > <□ > <□ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Numerical Simulations

We consider the following nonlinear system

$$\begin{bmatrix} x_{1,k+1} \\ x_{2,k+1} \end{bmatrix} = \begin{bmatrix} 0.99x_{1,k} \\ 0.9x_{2,k} + x_{1,k}^2 + x_{1,k}^3 + x_{1,k}^4 + u_k \end{bmatrix}.$$

Choose the lifted state as $z := col(x_1, x_2, x_1^2, x_1^3, x_1^4)$, leading to:

$$z_{k+1} = egin{bmatrix} 0.99 & 0 & 0 & 0 & 0 \ 0 & 0.9 & 1 & 1 & 1 \ 0 & 0 & 0.99^2 & 0 & 0 \ 0 & 0 & 0 & 0.99^3 & 0 \ 0 & 0 & 0 & 0 & 0.99^4 \end{bmatrix} z_k + egin{bmatrix} 0 \ 1 \ 0 \ 0 \ 0 \end{bmatrix} u_k,$$

We compare the prediction and control performance of four linear representations:

- our proposed Data-Driven Koopman representation (DD-K) (5).
- ② Data-Driven Affine representation (DD-A) (Berberich et al. 2022).
- § Koopman linear approximation (2) from EDMD (EDMD-K) (Mauroy et al. 2020)
- Deep Neural Network Koopman representation (DNN-K) (Shi and Meng 2022).

Xu Shang (UC San Diego) 2025 13/16

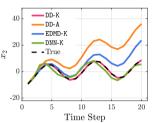
Numerical Simulations

Prediction performance:

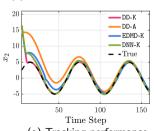
• DD-K (red) aligns with the true trajectory (black).

Control performance:

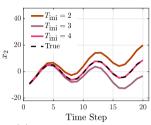
Realized control cost: DD-A > EDMD-K >DNN-K > DD-K.



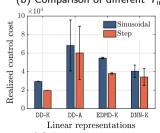
(a) Comparison of linear models



(a) Tracking performance



(b) Comparison of different $T_{\rm ini}$



(b) Realized control cost

Conclusion and Future work

Conclusion:

For nonlinear systems that admit an accurate Koopman linear embedding,

- The Willems' fundamental lemma can be directly applied with
 - a rich enough trajectory library;
 - 2 a sufficiently long initial trajectory.
- The selection process of lifting functions is not necessary and can be eliminated.

Future work:

- Linear representation for nonlinear systems with approximated Koopman linear model. (Shang, Li, and Zheng 2025)
- Analyze the effect of adaptively updating the trajectory library.
- Consider coupling nonlinearities between state and input.

Thank you for your attention!

Q & **A**

References I

- Berberich *et al.*, Julian (2022). "Linear Tracking MPC for Nonlinear Systems—Part II: The Data-Driven Case". In: *IEEE Trans. Autom. Control* 67.9, pp. 4406–4421. DOI: 10.1109/TAC.2022.3166851.
- Coulson et al., Jeremy (2019). "Data-enabled predictive control: In the shallows of the DeePC". In: 18th European Control Conference, pp. 307–312.
- Haggerty *et al.*, David A (2023). "Control of soft robots with inertial dynamics". In: *Sci. Rob.* 8.81, eadd6864.
- Koopman, Bernard O (1931). "Hamiltonian systems and transformation in Hilbert space". In: *PNAS* 17.5, pp. 315–318.
- Korda, Milan and Igor Mezić (2018). "Linear predictors for nonlinear dynamical systems: Koopman operator meets model predictive control". In: *Automatica* 93, pp. 149–160.

References II

- Markovsky, Ivan, Linbin Huang, and Florian Dörfler (2023). "Data-driven control based on the behavioral approach: From theory to applications in power systems". In: IEEE Control Systems Magazine 43.5, pp. 28–68.
- Mauroy et al., Alexandre (2020). Koopman Operator in Systems and Control.
- Shang, Xu, Zhaojian Li, and Yang Zheng (2025). "Dictionary-free Koopman Predictive Control for Autonomous Vehicles in Mixed Traffic". In: arXiv preprint arXiv:2504.06240.
- Shi, Haojie and Max Q-H Meng (2022). "Deep Koopman operator with control for nonlinear systems". In: IEEE Robotics and Automation Letters 7.3, pp. 7700–7707.
- Wang, Jiawei et al. (2023). "DeeP-LCC: Data-enabled predictive leading cruise control in mixed traffic flow". In: IEEE Transactions on Control Systems Technology 31.6. pp. 2760-2776.
- Willems et al., Jan C (2005). "A note on persistency of excitation". In: Syst. Control Lett. 54.4. pp. 325-329.

Xu Shang (UC San Diego) 16 / 16

2025

Extended Dynamic Decomposition

Matrix parameters A, B, C and D computation:

Organize the measured input-state-output data sequence

$$X = [x_0, ..., x_{n_d-2}], \quad X^+ = [x_1, ..., x_{n_d-1}],$$

 $U = [u_0, ..., u_{n_d-2}], \quad Y = [y_0, ..., y_{n_d-2}].$

Choose observables and compute lifted state

$$\mathrm{Z} = \left[\Phi(x_0), \dots, \Phi(x_{n_d-2})\right], \quad \mathrm{Z}^+ = \left[\Phi(x_1), \dots, \Phi(x_{n_d-1})\right].$$

Least-squares approximations

$$(A, B) \in \underset{A,B}{\operatorname{argmin}} \|\mathbf{Z}^{+} - A\mathbf{Z} - B\mathbf{U}\|_{F}^{2},$$

$$(C, D) \in \underset{C, D}{\operatorname{argmin}} \|\mathbf{Y} - C\mathbf{Z} - D\mathbf{U}\|_{F}^{2}.$$

$$(6)$$

Remark 2

The choice of observables affects (6) significantly. Even if a Koopman linear embedding exists for (1), we may not know the correct observables $\ref{eq:correct}$ for such a Koopman linear embedding.