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Control of Unknown Systems in a Data-rich World

Key insight of data-driven control: Data → Model + Error → Control.

(Markovsky, Huang, and Dörfler 2023)

Linear representation:

Parametric model: Koopman operator theorem
→ Koopman model predictive control
(Koopman 1931; Korda and Mezić 2018)

Data-driven model: Willems’ fundamental lemma
→ Data-EnablEd predictive control
(Willems et al. 2005; Coulson et al. 2019)

(a) Connected vehicles (Wang et al. 2023) (b) Soft robots (Haggerty et al. 2023)
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Data-driven model: Willems’ fundamental lemma
→ Data-EnablEd predictive control
(Willems et al. 2005; Coulson et al. 2019)

(a) Connected vehicles (Wang et al. 2023) (b) Soft robots (Haggerty et al. 2023)

Xu Shang (UC San Diego) 2025 2 / 16



Problem Statement

Consider a discrete-time nonlinear system

xk+1 = f (xk , uk),

yk = g(xk , uk),
(1)

where xk ∈ Rn, uk ∈ Rm and yk ∈ Rp are the state, input, and output of the system.

Key problem: The linear representation is generally inaccurate for nonlinear systems.

Can we construct an accurate linear model for a specific class of nonlinear systems?

Goal: Construct an accurate linear representation for the unknown nonlinear system that
admits an accurate Koopman linear model from data.
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Data-driven Representation via Koopman Operator Theorem

Key idea: Lift state xk of nonlinear system to a high-dimensional space

Definition 1 (Koopman linear embedding)

There exist a set of lifting functions (observables)
Φ(xk) := col(ϕ1(xk), . . . , ϕnz(xk)) ∈ Rnz ,

which propagates linearly along trajectories of the
nonlinear system (1).

Let zk = Φ(xk) ∈ Rnz , the Koopman (parametric) linear model is
zk+1 = Azk + Buk , yk = Czk + Duk . (2)

Given xini, we can obtain zini = Φ(xini).

There does not exist a systematic way to select lifting functions.
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Willems’ Fundamental Lemma

Willems’ fundamental lemma is established for linear time-invariant (LTI) system

xk+1 = A1xk + B1uk , yk = C1xk + D1uk . (3)

Lemma 1 (Willems’ fundamental lemma)

A length-L input-output data sequence col(u, y) is a
valid trajectory of (3) if and only if there exists g
such that Hdg = col(u, y),

for rich enough Hd.

Suppose we have (uini, yini) with length Tini

u1:Tini
= uini, y1:Tini

= yini ⇒ Hdg = col(uini, yini, uF, yF).

The Willems’ fundamental lemma can only be directly applied for LTI systems.
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Motivation

Observations:

Koopman operator theorem:
Nonlinear system → Linear system
High-dimensional state space, same input and output.

Willems’ fundamental lemma:
Unknown linear system → Data-driven model
Directly using input-output trajectories.

Key insight:
Unknown nonlinear system ⇒ Unknown linear system ⇒ Data-driven model

No need to choose lifting functions and the data-driven linear model is accurate.
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Main Result: Extended Willems’ fundamental lemma

Given: initial trajectory (Tini), trajectory library Hd.
Predict: length-N future trajectory.
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Main Result: Extended Willems’ fundamental lemma

Given: initial trajectory (Tini), trajectory library Hd.
Predict: length-N future trajectory.

Benefits of collecting more trajectories are
well-recognized.

Importance of extending initial trajectory is
overlooked.
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Behavior Spaces

Trajectory Spaces of nonlinear system and Koopman linear model:

BNL=

{[
u
y

]
| ∃ x(0)=x0∈Rn, nonlinear system dynamics holds

}
,

BK=

{[
u
y

]
| ∃ z(0)=z0∈Rnz , Koopman linear embedding holds

}
.

Key insight:
1) Willems’ fundamental lemma is valid for Koopman linear model, range(Hd) = BK.
2) Behavior space of the Koopman model is larger than nonlinear system, z0 = Φ(x0).

Only trajectories from nonlinear system are
available, i.e., columns of Hd from BNL.

The col(u, y) ∈ BK is a necessary condition
for col(u, y) ∈ BNL.
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Behavior Spaces Characterization & Construction

Theorem 1

Suppose Hd :=

[
u1d . . . uld
y1d . . . y ld

]
formed by l trajectories from BNL satisfies lifted excitation,

i.e., HK :=

[
u1d . . . uld

Φ(x10 ) . . . Φ(x l0)

]
has full row rank. Then, we have range(Hd) = BK.

Theorem 2

Let col(u, y) ∈ BK. Then, col(u, y) ∈ BNL if and only if its leading sequence of length-nz
(i.e., col(uld, yld)) is a valid trajectory of the nonlinear system.
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Data-driven Representation of Nonlinear Systems

Theorem 3

Suppose trajectory library Hd satisfies lifted excitation and col(uld, yld)∈BNL, (Tld≥nz).
The sequence col(uld, yld, us, ys) is a valid trajectory of nonlinear system if and only if there
exists g such that Hdg = col(uld, yld, us, ys).

Remark 1

We require no additional information as we can let

uld = uini, yld = yini, us = uF, ys = yF, (5)

in predicting the future output trajectory of the nonlinear system.

Theorem 3 provides an accurate data-driven linear representation.
Requires no prior knowledge of the nonlinearity or suitable observables;

Illustrates the importance of increasing the width and depth of the trajectory library.
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Numerical Simulations

We consider the following nonlinear system[
x1,k+1

x2,k+1

]
=

[
0.99x1,k

0.9x2,k + x21,k + x31,k + x41,k + uk

]
.

Choose the lifted state as z := col(x1, x2, x
2
1 , x

3
1 , x

4
1 ), leading to:

zk+1 =


0.99 0 0 0 0
0 0.9 1 1 1
0 0 0.992 0 0
0 0 0 0.993 0
0 0 0 0 0.994

 zk +


0
1
0
0
0

 uk ,

We compare the prediction and control performance of four linear representations:
1 our proposed Data-Driven Koopman representation (DD-K) (5).
2 Data-Driven Affine representation (DD-A) (Berberich et al. 2022).
3 Koopman linear approximation (2) from EDMD (EDMD-K) (Mauroy et al. 2020)
4 Deep Neural Network Koopman representation (DNN-K) (Shi and Meng 2022).
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Numerical Simulations

Prediction performance:

DD-K (red) aligns with the
true trajectory (black).

(a) Comparison of linear models (b) Comparison of different Tini

Control performance:

Realized control cost:
DD-A > EDMD-K >
DNN-K > DD-K.

(a) Tracking performance (b) Realized control cost
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Conclusion and Future work

Conclusion:
For nonlinear systems that admit an accurate Koopman linear embedding,

The Willems’ fundamental lemma can be directly applied with
1 a rich enough trajectory library;
2 a sufficiently long initial trajectory.

The selection process of lifting functions is not necessary and can be eliminated.

Future work:

Linear representation for nonlinear systems with approximated Koopman linear model.
(Shang, Li, and Zheng 2025)

Analyze the effect of adaptively updating the trajectory library.

Consider coupling nonlinearities between state and input.
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Thank you for your attention!

Q & A
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Extended Dynamic Decomposition

Matrix parameters A,B,C and D computation:
1 Organize the measured input-state-output data sequence

X =
[
x0, . . . , xnd−2

]
, X+ =

[
x1, . . . , xnd−1

]
,

U =
[
u0, . . . , und−2

]
, Y =

[
y0, . . . , ynd−2

]
.

2 Choose observables and compute lifted state

Z =
[
Φ(x0), . . . ,Φ(xnd−2)

]
, Z+ =

[
Φ(x1), . . . ,Φ(xnd−1)

]
.

3 Least-squares approximations
(A,B) ∈ argmin

A,B
∥Z+ − AZ− BU∥2F ,

(C ,D) ∈ argmin
C ,D

∥Y − CZ− DU∥2F .
(6)

Remark 2

The choice of observables affects (6) significantly. Even if a Koopman linear embedding
exists for (1), we may not know the correct observables ?? for such a Koopman linear
embedding.
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