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Mixed Traffic System

Background: Small perturbations of vehicle motion may propagate into large periodic
speed fluctuations, which lower traffic efficiency and reduce driving safety. Connected and
autonomous vehicles (CAVs) have great potential to mitigate traffic jams.

Single-lane Car Following Scenario

Mixed traffic with one CAV multiple HDVs.

Mitigate the traffic wave or Follow the trajectory of head vehicle.
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Problem Statement

Traditional Method:

Car-following model: ai (t) = Fi (si (t), ṡi (t), vi (t)).

Linearized model-based dynamics around equilibrium state:

NL: x(k + 1) = f (x(k), u(k)),

y(k) = x(k),
==⇒

LL: x̃(k + 1) = Ax̃(k) + Bũ(k),

ỹ(k) = Cx̃(k).

Key Challenge:

Unknown, nonlinear and nondeterministic behavior of HDVs
→ The parametric model (LL) is non-trivial to accurately obtain.

Change of the equilibrium state of the mixed traffic system
→ The parametric model (LL) needs to be re-identified when the equilibria changes.

Goal: Design CAV control input for unknown system (NL) using a linear representation
over the operating region to mitigate the traffic wave.
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ỹ(k) = Cx̃(k).

Key Challenge:

Unknown, nonlinear and nondeterministic behavior of HDVs
→ The parametric model (LL) is non-trivial to accurately obtain.

Change of the equilibrium state of the mixed traffic system
→ The parametric model (LL) needs to be re-identified when the equilibria changes.

Goal: Design CAV control input for unknown system (NL) using a linear representation
over the operating region to mitigate the traffic wave.

Xu Shang (UC San Diego) 2025 4 / 21



Problem Statement

Traditional Method:

Car-following model: ai (t) = Fi (si (t), ṡi (t), vi (t)).
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Data-driven Linear Representation

Available Data:

Input/output trajectory of length-T , i.e., ud, yd (Offline data).

Recent past input/output sequence of length-Tini, i.e., uini, yini (Online data).

Linear representation:

Parametric model: Koopman operator theorem
→ Koopman model predictive control (Koopman 1931; Korda and Mezić 2018)

Data-driven model: Willems’ fundamental lemma
→ Data-EnablEd predictive control (Willems et al. 2005; Coulson et al. 2019)

(a) Data-driven model (Wang et al. 2023) (b) Koopman parametric model (Li et al. 2025)
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Data-driven Representation via Koopman Operator Theorem

Key idea: Lift state xk of nonlinear system to a high-dimensional space

Definition 1 (Koopman linear embedding)

There exist a set of lifting functions (observables)
Φ(xk) := col(ϕ1(xk), . . . , ϕnz(xk)) ∈ Rnz ,

which propagates linearly along trajectories of the
nonlinear system (NL).

Let zk = Φ(xk) ∈ Rnz , the Koopman (parametric) linear model is
zk+1 = Azk + Buk , yk = Czk + Duk . (1)

Given xini, we can obtain zini = Φ(xini).

There does not exist a systematic way to select lifting functions.
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Willems’ Fundamental Lemma

Willems’ fundamental lemma is established for linear time-invariant (LTI) system

xk+1 = A1xk + B1uk , yk = C1xk + D1uk . (2)

Lemma 1 (Willems’ fundamental lemma)

A length-L input-output data sequence col(u, y) is a
valid trajectory of (2) if and only if there exists g
such that Hdg = col(u, y),

for rich enough Hd.

Suppose we have (uini, yini) with length Tini

u1:Tini
= uini, y1:Tini

= yini ⇒ Hdg = col(uini, yini, uF, yF).

The Willems’ fundamental lemma can only be directly applied for LTI systems
which requires local linearization.
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Motivation

Observations:

Koopman operator theorem:
Nonlinear system → Linear system
High-dimensional state space, same input and output.

Willems’ fundamental lemma:
Unknown linear system → Data-driven model
Directly using input-output trajectories.

Key insight:
Unknown nonlinear system ⇒ Unknown linear system ⇒ Data-driven Koopman model

No need to choose lifting functions and the (approximated) data-driven linear
model is for the nonlinear system.
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Mix Traffic System with Accurate Koopman Model

Definition 2

Suppose Hd :=

[
u1d . . . uld
y1d . . . y ld

]
is formed by l trajectories from BNL and its associated

HK :=

[
u1d . . . uld

Φ(x10 ) . . . Φ(x l0)

]
has full row rank. Then, we say Hd satisfies lifted excitation.

Theorem 1

Suppose trajectory library Hd satisfies lifted excitation. The sequence col(uini, yini, u, y)
with Tini≥nz is a valid trajectory of nonlinear system if and only if there exists g such that

Hdg = col(uini, yini, u, y).

Theorem 1 provides an accurate data-driven linear representation.
Requires no prior knowledge of the nonlinearity or suitable observables;

Illustrates the importance of increasing the width and depth of the trajectory library.
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Mixed Traffic System with Inaccurate Koopman Model

Search the Koopman linear model minimizing the distance to the collected data ud, yd.

min
A,B,C ,D,ȳ ,Φ⊂F

∥ȳ − yd∥22

subject to col(ud, ȳ) ∈ BK(A,B,C ,D,Φ),
(3)

Relax (3) via a set of constraints developed from linear system identification techniques.

min
H̄y ,K

∥Hy − H̄y∥2F

subject to rank(H̄) = mL+ nz, (4a)

ȲF = K col(UP, ȲP,UF), (4b)

K =
[
Kp Kf

]
, Kf ∈ L, (4c)

H̄y ∈ H, (4d)

where Hy , H̄y and H̄ represent col(YP,YF), col(ȲP, ȲF) and col(UP, ȲP,UF, ȲF).
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Sequential Optimization

We utilize an iterative algorithm to solve (4).
Step 1 (Low-rank approximation): We first only consider constraint (4a).

ΠL(Hy) : min
H̄y

∥Hy − H̄y∥F

subject to rank(H̄) = mL+ nz,

Step 2 (Causality projection): We then tackle constraints (4b) and (4c)

ΠC(Hy1) : min
H̄y ,K

∥Hy1 − H̄y∥F

subject to ȲF = K col(UP,YP1 ,UF),

K =
[
Kp Kf

]
, Kf ∈ L,

Step 3 (Hankel structure projection): We finally project Hy2 to a Hankel matrix set via
averaging skew-diagonal elements and denote it as Hy3 := ΠH(Hy2).
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Sequential Optimization

Algorithm Iterative SLRA

Input: UP, UF, YP, YF, nz, ϵ
1: Hy ← col(YP,YF), Hy3 ← Hy ;
2: repeat
3: Hy1 ← ΠL(Hy3) (Low-rank approx);
4: Hy2←ΠC(Hy1) (Causality proj);
5: Hy3←ΠH(Hy2) (Hankel proj);
6: until ∥Hy1 − Hy3∥F ≤ ϵ∥Hy1∥F

Output: H∗
y = Hy1

All three optimization problems
have analytical solutions.

This algorithm converges
practically.

The output data-driven Koopman
model is guaranteed to satisfy the
causality constraint.

Data-driven Koopman linear model (approximated):

H̄∗ = col(UP,Y
∗
P ,UF,Y

∗
F ) where col(Y ∗

P ,Y
∗
F ) := H∗

y .
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Dictionary-free Koopman model predictive control

We propose the dictionary-free Koopman model predictive control (DF-KMPC)

min
g ,u∈U ,y∈Y

∥y − yr∥Q + ∥u∥R

subject to H̄∗g = col(Πini(col(uini, yini)), u, y),
(5)

where Πini projects the intial trajectory to the range space of col(UP,Y
∗
P).

Advantages of DF-KMPC:

Do not require extra regularizers to do implicit system identification.

Do not require relaxation on the initial condition via slack variables.

Bypass the selection of lifting functions.

Avoid re-identification when the equilibrium point changes
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Numerical Simulations

System Setup:
1 CAV, 4 HDVs behind.

Scenarios:

Ring road scenario
→ traffic wave mitigation performance.

Real-data highway scenario
→ velocity tracking performance.

We compare the control performance of three different approaches:

1 our proposed Dictionary-free Koopman MPC (DF-KMPC) (5).

2 Koopman linear approximation (1) from EDMD (EDMD-K) (Mauroy et al. 2020).

3 Deep Neural Network Koopman representation (DNN-K) (Shi and Meng 2022).
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Ring Road Scenario

When all vehicles are HDV, the
traffic wave propagates along the
vehicle chain without vanishing.

Both DF-K and DNN-K can
effectively prevent and dampen the
propagation of the traffic wave.

The EDMD-K can mitigate traffic
wave but not it is not significant.
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Real-data Highway Scenario

Realization cost:

The realization cost illustrates
EDMD-K>DNN-K>DF-K.

DNN-K provides comparable
performance in some trajectories
but requires much more data.

Control performance:

Improper set of lifting functions in
EDMD-K can lead to relatively large
deviation in velocity tracking.
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Conclusion and Future work

Conclusion:

We provide a systematic procedure to obtain a (approximated) data-driven
representation for the Koopman linear model.

We develop the DF-KMPC for CAV control in mixed traffic.

Our approach 1) bypasses the selection of lifting functions and 2) does not require
updating when the equilibrium state changes.

Future work:

Consider the modeling error and develop a robust DF-KMPC.

Construct a switching algorithm with Koopman linear models computed for different
operating regions.

Test the DF-KMPC in larger-scale traffic simulation and real platform.

Xu Shang (UC San Diego) 2025 20 / 21



Thank you for your attention!

Q & A
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Extended Dynamic Decomposition

Matrix parameters A,B,C and D computation:
1 Organize the measured input-state-output data sequence

X =
[
x0, . . . , xnd−2

]
, X+ =

[
x1, . . . , xnd−1

]
,

U =
[
u0, . . . , und−2

]
, Y =

[
y0, . . . , ynd−2

]
.

2 Choose observables and compute lifted state

Z =
[
Φ(x0), . . . ,Φ(xnd−2)

]
, Z+ =

[
Φ(x1), . . . ,Φ(xnd−1)

]
.

3 Least-squares approximations
(A,B) ∈ argmin

A,B
∥Z+ − AZ− BU∥2F ,

(C ,D) ∈ argmin
C ,D

∥Y − CZ− DU∥2F .
(6)

Remark 1

The choice of observables affects (6) significantly. Even if a Koopman linear embedding
exists for ??, we may not know the correct observables ?? for such a Koopman linear
embedding.
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