Smoothing Mixed Traffic with Robust Data-driven Predictive Control for Connected Autonomous Vehicles¹

Xu Shang

SOC Lab ECE, UC San Diego

Joint Work With: Dr. Jiawei Wang Supervised by: Prof. Yang Zheng

South California Control Workshop, April 2024

Shang, Xu (UCSD)

8 Robust DeePC in Smoothing Mixed Traffic

1 Introduction to Mixed Traffic System

2 Review of Data-Enabled Predictive Control (DeePC)

3 Robust DeePC in Smoothing Mixed Traffic

4 Conclusion and Future Work

Stop-and-go Traffic Waves

Small perturbations of vehicle motion may progate into large periodic speed fluctuations, which (1) lowers traffic efficiency and (2) reduces driving safety.

https://www.youtube.com/watch?v=7wm-pZp_mi0

Experimental Validation of Data-EnablEd Predictive Leading Cruise Control (DeeP-LCC) in Dissipating Traffic Waves

https://www.youtube.com/watch?v=ZZ2cWhapqpc

Mixed Traffic System

System Setup:

- The mixed traffic system consists of one connected and autonomous vehicle (CAV) and n - 1 human-driven vehicles (HDV). All these vehicles follow a head vehicle.
- For the *i*-th vehicle, its position, velocity and acceleration are denoted as p_i, v_i and a_i. The spacing of vehicle i is s_i = p_{i-1} p_i.

Vehicle Dynamics:

- HDV: $a_i(t) = v_i(t) = F_i(s_i(t), \dot{s}_i(t), v_i(t)).$
- CAV: Control input $a_i(t) = u_i(t)$.

Mixed Traffic System

Combine all dynamics of HDVs and CAVs after linearization, the system model of mixed traffic is

$$\begin{cases} x(k+1) = Ax(k) + Bu(k) + H\epsilon(k), \\ y(k) = Cx(k), \end{cases}$$
(1)

where we define

$$\begin{aligned} \mathbf{x}(t) &= [\tilde{s}_1(t), \tilde{v}_1(t), \tilde{s}_2(t), \tilde{v}_2(t), \dots, \tilde{s}_n(t), \tilde{v}_n(t)]^{\mathsf{T}} \in \mathbb{R}^{2n}, \\ \mathbf{y}(t) &= [\tilde{v}_1(t), \tilde{v}_2(t), \dots, \tilde{v}_n(t), \tilde{s}_1(t)]^{\mathsf{T}} \in \mathbb{R}^{n+1}. \end{aligned}$$

The input is the acceleration of the CAV and the disturbance is the velocity error of the preceding vehicle.

Mixed Traffic System

Combine all dynamics of HDVs and CAVs after linearization, the system model of mixed traffic is

$$\begin{cases} x(k+1) = Ax(k) + Bu(k) + H\epsilon(k), \\ y(k) = Cx(k), \end{cases}$$
(1)

where we define

$$egin{aligned} & \mathbf{x}(t) = [ilde{s}_1(t), ilde{v}_1(t), ilde{s}_2(t), ilde{v}_2(t), \dots, ilde{s}_n(t), ilde{v}_n(t)]^\mathsf{T} \in \mathbb{R}^{2n}, \ & \mathbf{y}(t) = [ilde{v}_1(t), ilde{v}_2(t), \dots, ilde{v}_n(t), ilde{s}_1(t)]^\mathsf{T} \in \mathbb{R}^{n+1}. \end{aligned}$$

The input is the acceleration of the CAV and the disturbance is the velocity error of the preceding vehicle.

Goal: Design control input for unknown system (1) with available traffic data.

Introduction to Mixed Traffic System

2 Review of Data-Enabled Predictive Control (DeePC)

3 Robust DeePC in Smoothing Mixed Traffic

4 Conclusion and Future Work

DeePC Overview

Consider the well-known receding horizon predictive control problem with unknown system model and initial state

$$\min_{x,u,y} \sum_{k=t}^{t+N-1} (\|y(k)\|_{Q}^{2} + \|u(k)\|_{R}^{2})$$
subject to $x(k+1) = Ax(k) + Bu(k),$ (2a)
 $y(k) = Cx(k) + Du(k),$ (2b)
 $x(t) = x_{ini},$
 $u(k) \in \mathcal{U}, \ y(k) \in \mathcal{Y},$

and we only have access to

- Input/output trajectory of length-*T* (Offline data).
- The most recent past input/output sequence of length-*T_{ini}* (Online data).

Data-Eanbled Predictive Control (Coulson, 2019):

- Construct a data-driven representation for system (2).
- **2** Ensure the predicted trajectory satisfy the initial condition of the system.

Lemma 1 (Fundamental Lemma)

Suppose that system (2) is controllable. Given a length-T I/O trajectory: $u_{d} \in \mathbb{R}^{mT}$, $y_{d} \in \mathbb{R}^{pT}$ and assume these data is rich enough, then a length-L I/O sequence (u_s, y_s) is a valid trajectory of (2) if and only if there exists a $g \in \mathbb{R}^{T-L+1}$ such that

$$\begin{bmatrix} \mathcal{H}_L(u_{\mathsf{d}}) \\ \mathcal{H}_L(y_{\mathsf{d}}) \end{bmatrix} g = \begin{bmatrix} u_{\mathsf{s}} \\ y_{\mathsf{s}} \end{bmatrix}.$$

10 / 27

Shang, Xu (UCSD)

DeePC Formulation

Model Predictive Control:

$$\begin{split} \min_{x,u,y} & \sum_{k=t}^{t+N-1} \left(\|y(k) - y_{r}(k)\|_{Q}^{2} + \|u(k)\|_{R}^{2} \right) \\ \text{subject to} & x(k+1) = A x(k) + B u(k), \quad k \in [t, t+N-1] \\ & y(k) = C x(k) + D u(k), \quad k \in [t, t+N-1] \\ & x(t) = \sum_{\text{ini}}, \\ & u(k) \in \mathcal{U}, \ y(k) \in \mathcal{Y}, \quad k \in [t, t+N-1], \end{split}$$

Data-enabled Predictive Control:

su

$$\min_{g,u,y} \sum_{k=t}^{t+N-1} (\|y(k)\|_Q^2 + \|u(k)\|_R^2)$$

bject to
$$\begin{bmatrix} U_P \\ Y_P \\ U_F \\ V_F \end{bmatrix} g = \begin{bmatrix} u_{\text{ini}} \\ y_{\text{ini}} \\ u \\ y \end{bmatrix}$$
$$u \in \mathcal{U}, y \in \mathcal{Y}$$

∃⊳

Introduction to Mixed Traffic System

2 Review of Data-Enabled Predictive Control (DeePC)

3 Robust DeePC in Smoothing Mixed Traffic

DeePC with Disturbance Estimation

We can treat the disturbance as another input and form the system as

$$\begin{cases} x(k+1) = Ax(k) + \begin{bmatrix} B & H \end{bmatrix} \begin{bmatrix} u(k) \\ \epsilon(k) \end{bmatrix} = Ax(k) + \hat{B}\hat{u}(k), \\ y(k) = Cx(k), \end{cases}$$

The form of the DeePC becomes

$$\begin{split} \min_{g,\sigma_y,u,\epsilon,y} & V(u,y) + \lambda_g ||g||_2^2 + \lambda_y ||\sigma_y||_2^2 \\ \text{subject to} & \begin{bmatrix} U_{\mathsf{P}} \\ E_{\mathsf{P}} \\ V_{\mathsf{P}} \\ U_{\mathsf{F}} \\ F_{\mathsf{F}} \end{bmatrix} g = \begin{bmatrix} u_{\mathsf{ini}} \\ \epsilon_{\mathsf{ini}} \\ y_{\mathsf{ini}} + \sigma_y \\ u \\ \epsilon \\ y \end{bmatrix}, \\ \tilde{s}_{\mathsf{min}} \leq G_1 y \leq \tilde{s}_{\mathsf{max}}, \\ u_{\mathsf{min}} \leq u \leq u_{\mathsf{max}}, \\ \epsilon = \epsilon_{\mathsf{est}}. \end{split}$$

Robust DeePC

We can estimate a potential disturbance set to robustify the problem $\min_{g,\sigma_{y},u,\epsilon,y} \max_{\epsilon \in \mathcal{W}} \quad V(u,y) + \lambda_{g} ||g||_{2}^{2} + \lambda_{y} ||\sigma_{y}||_{2}^{2}$ subject to $\begin{bmatrix} U_{\mathsf{P}} \\ E_{\mathsf{P}} \\ Y_{\mathsf{P}} \\ U_{\mathsf{F}} \\ U_{\mathsf{F}} \\ E_{\mathsf{F}} \\ \mathbf{v} \end{bmatrix} g = \begin{bmatrix} u_{\mathsf{ini}} \\ \epsilon_{\mathsf{ini}} \\ y_{\mathsf{ini}} + \sigma_y \\ u \\ \epsilon \\ \mathbf{v} \end{bmatrix} ,$ $\tilde{s}_{\min} < G_1 y < \tilde{s}_{\max}, \quad \forall \epsilon \in \mathcal{W}.$ $u_{\min} < u < u_{\max}$ min x.t subject to $x^{\mathsf{T}}Mx + d^{\mathsf{T}}x \leq t$, $\forall \epsilon \in \mathcal{W}$. $\tilde{s}_{\min} < P_1 x + c_1 < \tilde{s}_{\max}, \quad \forall \epsilon \in \mathcal{W},$ $u_{\min} < P_2 x < u_{\max}$ where $x = col(u, \sigma_v, \epsilon)$ is decision variable.

Robust DeePC

We can estimate a potential disturbance set to robustify the problem $\min_{g,\sigma_y,u,\epsilon,y} \max_{\epsilon \in \mathcal{W}} \quad V(u,y) + \lambda_g ||g||_2^2 + \lambda_y ||\sigma_y||_2^2$

subject to $\begin{vmatrix} U_{P} \\ E_{P} \\ Y_{P} \\ U_{F} \\ E_{F} \\ V_{-} \end{vmatrix} g = \begin{vmatrix} u_{\text{ini}} \\ \epsilon_{\text{ini}} \\ y_{\text{ini}} + \sigma_{y} \\ u \\ \epsilon \\ v \end{vmatrix}, \qquad \begin{array}{c} \text{Auvaluages.} \\ \bullet \text{ Increase the safety} \\ guarantee. \\ \bullet \text{ Decrease the required} \\ amount of offline data \end{array}$ $\widetilde{s}_{\min} < G_1 \gamma < \widetilde{s}_{\max}, \quad \forall \epsilon \in \mathcal{W},$ $u_{\min} < u < u_{\max}$

$$\min_{x,t} t$$

subject to $x^{\mathsf{T}}Mx + d^{\mathsf{T}}x < t, \quad \forall \epsilon \in \mathcal{W},$ $\tilde{s}_{\min} \leq P_1 x + c_1 \leq \tilde{s}_{\max}, \quad \forall \epsilon \in \mathcal{W},$ $u_{\min} < P_2 x < u_{\max}$

where $x = col(u, \sigma_v, \epsilon)$ is decision variable.

Advantages:

- amount of offline data.

Trade-off:

- Increase the computational cost.
- An accurate disturbance estimation method is needed.

The estimated disturbance set is modeled as an N-dimensional polytope

$$\mathcal{W} = \{ \epsilon \in \mathbb{R}^N | A_{\epsilon} \epsilon \leq b_{\epsilon} \},\$$

where $A_{\epsilon} = [I; -I], b_{\epsilon} = [\epsilon_{\max}; -\epsilon_{\min}].$

Estimation Methods:

- Constant bound: the **disturbance** variation for the future disturbance trajectory is close to its past trajectory.
- Time-varying bound: the variation of the **acceleration** for the future disturbance trajectory is close to its past trajectory.

Shang, Xu (UCSD)

Efficient Computations

Method I: Vertex-based. The compact polytope \mathcal{W} can be represented as the convex hull of its extreme points $\mathcal{W} = \operatorname{conv}(\omega_1, \dots, \omega_{n_v})$ where $n_v = 2^N$. $\min_{x,t} t$ subject to $x_j^{\mathsf{T}} M x_j + d^{\mathsf{T}} x_j \leq t, j = 1, \dots, n_v,$ $\widetilde{s}_{\min} \leq P_1 x_j + c_1 \leq \widetilde{s}_{\max}, j = 1, \dots, n_v,$ $u_{\min} \leq P_2 x \leq u_{\max}.$ (3c)

Efficient Computations

Method I: Vertex-based. The compact polytope \mathcal{W} can be represented as the convex hull of its extreme points $\mathcal{W} = \operatorname{conv}(\omega_1, \ldots, \omega_{n_v})$ where $n_v = 2^N$. min

subject to
$$x_j^{\mathsf{T}} M x_j + d^{\mathsf{T}} x_j \leq t, j = 1, \dots, n_{\mathrm{v}},$$
 (3a)

$$\tilde{s}_{\min} \leq P_1 x_j + c_1 \leq \tilde{s}_{\max}, j = 1, \dots, n_v,$$
(3b)

$$u_{\min} \leq P_2 x \leq u_{\max}.$$
 (3c)

Method II: Duality-based. Change the affine constraint into its dual problem and form the problem as a min-min problem.

$$\min_{x_{d},t,\lambda_{1},\lambda_{2}} t$$
subject to $p_{l,d}^{\mathsf{T}} x_{d} + b_{\epsilon}^{\mathsf{T}} \lambda_{l,1} + c_{1,l} \leq \tilde{s}_{\max},$ (4a)
$$A_{\epsilon}^{\mathsf{T}} \lambda_{l,1} - p_{l,\epsilon} = 0,$$
(4b)
$$- p_{l,d}^{\mathsf{T}} x_{d} + b_{\epsilon}^{\mathsf{T}} \lambda_{l,2} - c_{1,l} \leq -\tilde{s}_{\min},$$
(4c)
$$A_{\epsilon}^{\mathsf{T}} \lambda_{l,2} + p_{l,\epsilon} = 0,$$
(4d)
$$\lambda_{l,1} \geq 0, \lambda_{l,2} \geq 0, \ l = 1, 2, \dots, N,$$
(4e)
$$(3a), (3c).$$
(2024)

Complexity with down-sampling strategy

Down-sampling Strategy: Choose one point for every T_s steps to approximate the disturbance trajectory and perform linear interpolation.

Figure: Illustration of down-sampling strategy (Huang et al., 2023)

Complexity with down-sampling strategy

Down-sampling Strategy: Choose one point for every T_s steps to approximate the disturbance trajectory and perform linear interpolation.

Figure: Illustration of down-sampling strategy (Huang et al., 2023)

Table: Complexity comparison between Method I and Method II.

	Decision Variables Number	Constraints Number
M1 M2	$(n+1)T_{ini} + N + 1 (n+1)T_{ini} + N + 1 + 4N^2$	$2^{N} + N \cdot 2^{N+1} + 2N$ $2^{N} + 2N(3N+2)$
M1 (L) M2 (L)	$(n+1)T_{\mathrm{ini}} + N + 1 \ (n+1)T_{\mathrm{ini}} + N + 1 + 4Nn_{\epsilon}$	$2^{n_\epsilon} + N \cdot 2^{n_\epsilon+1} + 2N onumber 2^{n_\epsilon} + 2N(3n_\epsilon+2)$

17 / 27

Experiment Setup

System Setup:

• We consider the CAV 1 is followed by 4 HDVs, and there are three vehicles in front of the head vehicle 0.

• The length of pre-collected data sets are T = 500 for a small data set and T = 1500 for a large data set.

Experiment Setup

System Setup:

• We consider the CAV 1 is followed by 4 HDVs, and there are three vehicles in front of the head vehicle 0.

Figure: Simulation scenario

• The length of pre-collected data sets are T = 500 for a small data set and T = 1500 for a large data set.

Scenarios:

- Comprehensive simulation: design a velocity profile of the leading vehicle and check the tracking performance of the controller.
- Braking scenario: the leading vehicle will suddenly brake with the maximum deceleration to validate the safety performance of the controller

18 / 27

Comprehensive Experiment

We first validate the control performance of robust DeeP-LCC in a comprehensive scenario.

Shang, Xu (UCSD)

The robust DeeP-LCC decreases the fuel consumption especially at the braking phase.

Table: Fuel Consumption in Comprehensive Experiment (unit: mL)							
	All HDVs	DeeP-LCC	Robust DeeP-LCC				
Phase 1	145.59	141.02 (↓ 3.14%)	135.60 (↓ 6.86%)				
Phase 2	314.77	312.95 (↓ 0.58%)	311.83 (↓ 0.94%)				
Phase 3	725.28	723.95 (↓ 0.18%)	722.88 (↓ 0.33%)				
Phase 4	259.05	246.16 (↓ 4.97%)	237.89 (↓ 8.17%)				
Total Process	1530.15	1509.6 (↓ 1.54%)	1493.6(↓ 2.39%)				

1 **τ**)

Braking Scenario

We then validate the safety performance of robust DeeP-LCC in the braking scenario.

(c) Small offline data set with T = 500

(d) Large offline data set with T = 1500

The robust DeeP-LCC provides better safety guarantee.

Table: Collision and Safety Constraint violation rate

	DeeP-LCC		Robust DeeP-LCC	
	<i>T</i> = 500	T = 1500	T = 500	T = 1500
Violation Rate	74%	62%	5%	0%
Emergency Rate	66%	51%	4%	0%

Violation: the CAV's spacing deviates more than 1 m from safety range. **Emergency:** the CAV's spacing deviates over 5 m from safety range

Introduction to Mixed Traffic System

2 Review of Data-Enabled Predictive Control (DeePC)

3 Robust DeePC in Smoothing Mixed Traffic

Conclusion and Future work

Conclusion: The robust formulation with relative accurate disturbance set estimation methods

- Provide a stronger safety guarantee.
- Improve the control performance.
- Allow for the applicability of a smaller data set.

Future work:

- Learning-based estimation for future disturbances.
- Incorporation of communication-delayed traffic data.

Figure: Schematic of centralized and decentralized robust DeeP-LCC

Shang, Xu (UCSD)

Acknowledgements

∃ → 2024

æ

Thank you!

Q&A

æ

< ロ > < 回 > < 回 > < 回 > < 回 >

Reference

Markovsky, I., Huang, L., & Dörfler, F. (2023). Data-driven control based on the behavioral approach: From theory to applications in power systems. IEEE Control Systems Magazine, 43(5), 28-68.

Coulson, J., Lygeros, J., & Dörfler, F. (2019, June). Data-enabled predictive control: In the shallows of the DeePC. In 2019 18th European Control Conference (ECC) (pp. 307-312). IEEE.

Wang, J., Zheng, Y., Dong, J., Chen, C., Cai, M., Li, K., & Xu, Q. (2023). Implementation and experimental validation of data-driven predictive control for dissipating stop-and-go waves in mixed traffic. IEEE Internet of Things Journal.

Huang, L., Coulson, J., Lygeros, J., & Dörfler, F. (2021). Decentralized data-enabled predictive control for power system oscillation damping. IEEE Transactions on Control Systems Technology, 30(3), 1065-1077.

Fawcett, R. T., Amanzadeh, L., Kim, J., Ames, A. D., & Hamed, K. A. (2023, May). Distributed data-driven predictive control for multi-agent collaborative legged locomotion. In 2023 IEEE International Conference on Robotics and Automation (ICRA) (pp. 9924-9930). IEEE.

Coulson, J., Lygeros, J., & Dörfler, F. (2019, June). Data-enabled predictive control: In the shallows of the DeePC. In 2019 18th European Control Conference (ECC) (pp. 307-312). IEEE.

Dörfler, F., Coulson, J., & Markovsky, I. (2022). Bridging direct and indirect data-driven control formulations via regularizations and relaxations. IEEE Transactions on Automatic Control, 68(2), 883-897.

Wang, J., Zheng, Y., Li, K., & Xu, Q. (2023). DeeP-LCC: Data-enabled predictive leading cruise control in mixed traffic flow. IEEE Transactions on Control Systems Technology.

Alsalti, M., Markovsky, I., Lopez, V. G., & Müller, M. A. (2023). Data-based system representations from irregularly measured data. arXiv preprint arXiv:2307.11589.

Zhang, K., Zheng, Y., Shang, C., & Li, Z. (2023). Dimension reduction for efficient data-enabled predictive control. IEEE Control Systems Letters.

Milanés, V., Shladover, S. E., Spring, J., Nowakowski, C., Kawazoe, H., & Nakamura, M. (2013). Cooperative adaptive cruise control in real traffic situations. IEEE Transactions on intelligent transportation systems, 15(1), 296-305.

Zheng, Y., Wang, J., & Li, K. (2020). Smoothing traffic flow via control of autonomous vehicles. IEEE Internet of Things Journal, 7(5), 3882-3896.

Wang, J., Zheng, Y., Chen, C., Xu, Q., & Li, K. (2021). Leading cruise control in mixed traffic flow: System modeling, controllability, and string stability. IEEE Transactions on Intelligent Transportation Systems, 23(8), 12861-12876.

Shang, Xu (UCSD)

27 / 27