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Stop-and-go Traffic Waves

Small perturbations of vehicle motion may progate into large periodic speed
fluctuations, which (1) lowers traffic efficiency and (2) reduces driving safety.

e — o - : -—
= Traffic Jam without Bottleneck
Experimental evidence
for the physical mechanism of forming a jam

. Yuki Sugiyama, Minoru Fukui, Macoto Kikuchi
Katsuya Hasebe, Akihiro Naka Katsuhiro Nishinan
Shin-ichi Tadaki and Satoshi Yukawa?

Movie 1

https://www.youtube.com /watch?v=7wm-pZp_mi0
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Traffic Wave Mitigation

Experimental Validation of Data-EnablEd
Predictive Leading Cruise Control (DeeP-LCC)
in Dissipating Traffic Waves

P — UC San Diego
T H I C v JACOBS SCHOOL OF EN%INEERING

Intelligent and Connected Vehicles Electrical and Computer Engineering

https://www.youtube.com/watch?v=ZZ2cWhapqpc
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Mixed Traffic System

System Setup:

@ The mixed traffic system consists of one connected and autonomous vehicle

(CAV) and n — 1 human-driven vehicles (HDV). All these vehicles follow a
head vehicle.

@ For the i-th vehicle, its position, velocity and acceleration are denoted as
pi, vi and a;. The spacing of vehicle i is s; = p;_1 — p;.

/cm/: /ct)/\/ﬁ P x Disturbance_
S 0 8 oo o —igmNs g o
HDV n cee HDV 3 HDV 2 CAV 1 Preceding Vehicle 0

Vehicle Dynamics:
e HDV: a,-(t) = V,'(l') = F,'(S,'(t),S.,'(l'), V,'(t)).
@ CAV: Control input a;(t) = u;(t).
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Mixed Traffic System

Combine all dynamics of HDVs and CAVs after linearization, the system
model of mixed traffic is

x(k + 1) = Ax(k) 4+ Bu(k) + He(k), 1)
y(k) = Cx(k),

where we define

x(t) = [8(t), (1), 52(2), a(t), - . ., 5a(t), Un(£)]T € R?",
y(t) = [01(t), %a(t), ..., Vn(t), 51(t)]" € R™L,

The input is the acceleration of the CAV and the disturbance is the velocity error
of the preceding vehicle.
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Mixed Traffic System

Combine all dynamics of HDVs and CAVs after linearization, the system
model of mixed traffic is

x(k + 1) = Ax(k) 4+ Bu(k) + He(k), (1)
y(k) = Cx(k),

where we define

x(t) = [8(t), (1), 52(2), a(t), - . ., 5a(t), Un(£)]T € R?",
y(t) = [01(t), %a(t), ..., Vn(t), 51(t)]" € R™L,

The input is the acceleration of the CAV and the disturbance is the velocity error
of the preceding vehicle.

Goal: Design control input for unknown system (1) with available traffic data.
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DeePC Overview

Consider the well-known receding horizon predictive control problem with
unknown system model and initial state

t+N—-1
min 7 (IR + llu(k) )
k=t
subject to  x(k + 1) = /x(k) + “u(k), (2a)
y(k) = Cx(k) + Du(k), (2b)

and we only have access to

@ Input/output trajectory of length-T (Offline data).

@ The most recent past input/output sequence of length-T;,; (Online data).
Data-Eanbled Predictive Control (Coulson, 2019):

@ Construct a data-driven representation for system (2).

@ Ensure the predicted trajectory satisfy the initial condition of the system.
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DeePC Overview

Lemma 1 (Fundamental Lemma)

Suppose that system (2) is controllable. Given a length-T 1/0 trajectory:
ug € R™T, yy € RPT and assume these data is rich enough, then a length-L 1/0
sequence (us, ys) is a valid trajectory of (2) if and only if there exists a

g € RT=H1 such that
e[
Hi(ya) ¥s)'

time series data
linear combination

prediction

(Markovsky et al., 2023)
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DeePC Formulation

Model Predictive Control:

t+N—1
min > (yk) = %K)l + llu(k)I7)
Y k=t

subject to  x(k + 1) (k +u(k

y(k)=[Clx k)+@u (),

x(t) = x|,

u(k) eU, y(k) €,
Data-enabled Predictive Control:

k

kelt,t+N—1]
kelt,t+ N—1]

€t t+N-—1],

t+N—-1
min 2 (bl +eGlR)
Up
subject to Z;Z g =
\G y
veld,yel
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DeePC with Disturbance Estimation

We can treat the disturbance as another input and form the system as

k N
x(k+1) = Ax(K)+ [B H] [:((k))] — Ax(k) + Ba(k),
y(k) = Cx(k),
The form of the DeePC becomes
min V(U»}/)+)‘g||g||§+)‘y||‘7y||§

8:0y,lsE,y
Up Uini
Ep €ini
. Ye| | Viitoy
subject to Ur g = u ,
EF €
Yr y

gmin S Gly S §max7
Upin < U < Umax,

€ = €est-
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Robust DeePC

We can estimate a potential disturbance set to robustify the problem

. 2 2
gnin max V(y) + Agllgll + Aylloyll2

Up Uin
Ep €ini
. Yp Yinito
bject t =™
subject to Ur g u ,
EF €
\G y
Smin < Gly < §max, Ve € W,
Umin S u S Umax-
min t
X,t

subject to x"Mx+d"x <t VYeeWw,
§min S P1X + (5] S §max7 Ve € Wa

Umin S PZX S Umax-

where x = col(u, 0y, €) is decision variable.
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Robust DeePC

We can estimate a potential disturbance set to robustify the problem

min max  V(u,y) + Allgllz + Ay lloy |13
g,0y,Usey €W

Up Uini Advantages:

Ep Cini @ Increase the safety
subject to Ye g = Yini +0y uarantee

Ur u ’ g ’

Er € @ Decrease the required

Ye y amount of offline data.

Smin < G1y < Smax, Ve €W, Trade-off:

Umin < U < Umax-
min = 7 = max @ Increase the

”Q’itn t computational cost.
subject to x Mx+d'x<t, YeeW, @ An accurate
Suin < Pix 4 ¢1 < Enax, VEEW, disturbance estimation

method is needed.
Umin S PZX S Umax-

where x = col(u, 0y, €) is decision variable.
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Disturbance Estimation

The estimated disturbance set is modeled as an N-dimensional polytope

W = {e € RN|Ace < b},
where A. = [I; =], be = [€max; —€min]-
Estimation Methods:

@ Constant bound: the disturbance variation for the future disturbance

trajectory is close to its past trajectory.

@ Time-varying bound: the variation of the acceleration for the future

disturbance trajectory is close to its past trajectory.
Past Future

Time-varying Bound
Estimated Set “\\

Disturbance
max(€ni) /
/

min(aini)

\
min(€ini) N .. Constant Bound
Estimated Set

Time

k — Tini k k+ N
Figure: Schematic of disturbance estimation methods
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Efficient Computations

Method I: Vertex-based. The compact polytope W can be represented as the

convex hull of its extreme points W = conv(wy, . .., w,, ) where n, = 2N,
min t
X,t
subject to xJ-T/\/lXj +d'x <t j=1,..,n, (3a)
§min§P1Xj+C1§§maX7j: 13"'7”\/3 (3b)
Umin < P2X < Umax- (3C)
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Efficient Computations

Method I: Vertex-based. The compact polytope W can be represented as the

convex hull of its extreme points W = conv(w, . ..,w,, ) where n, = 2V,
min t
X,t
subject to XJTMXJ +d'x <t j=1,..,n, (3a)
§min§P1Xj+C1§§maX7j: 13"'7”\/3 (3b)
Unmin < P2X < Umax- (3C)

Method II: Duality-based. Change the affine constraint into its dual problem
and form the problem as a min-min problem.

min t
Xd,t,A1,A2
subject to PIdXd + beT)\/,1 + c1,1 < Smaxs (4a)
A;r)\l,l — Ple = Oa (4b)
- PIdXd +bI N2 — 1,1 < —Fmin, (4c)
AlN2+pre=0, (4d)
)\1,1207A172207 /:172a"'7Na (4e)

(3a), (3¢).
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Complexity with down-sampling strategy

Down-sampling Strategy: Choose one point for every T steps to approximate
the disturbance trajectory and perform linear interpolation.

Past trajectory Future trajectory

----

Prediction h

Figure: Illustration of down-sampling strategy (Huang et al., 2023)
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Complexity with down-sampling strategy

Down-sampling Strategy: Choose one point for every T steps to approximate
the disturbance trajectory and perform linear interpolation.

,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,

----

T
Prediction horizon

Figure: Illustration of down-sampling strategy (Huang et al., 2023)
Table: Complexity comparison between Method | and Method II.

Decision Variables Number Constraints Number

M1 (n+1)Tini+N+1 2N_|_N.2N+1_|_2N
M2 (n+1)7_ini+N+1+4N2 2N+2N(3N+2)
M]. (L) (n+1)7—lnl+N+1 2ne+N'2n5+1+2N

M2 (L) (n+1D)Twmi+N+1+4Nn. 2" +2N(3n, +2)
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Experiment Setup

System Setup:

@ We consider the CAV 1 is followed by 4 HDVs, and there are three vehicles
in front of the head vehicle 0.

Disturbance Perturbation

~O-0-0—@~
1 0 -1 -2 -3

4 3 2

IS

CF-LCC System
Figure: Simulation scenario

@ The length of pre-collected data sets are T = 500 for a small data set and
T = 1500 for a large data set.

Shang, Xu (UCSD)



Experiment Setup

System Setup:

@ We consider the CAV 1 is followed by 4 HDVs, and there are three vehicles
in front of the head vehicle 0.

Disturbance Perturbation

~O-0-0—@~
1 0 -1 -2 -3

4 3 2

IS

CF-LCC System

Figure: Simulation scenario

@ The length of pre-collected data sets are T = 500 for a small data set and
T = 1500 for a large data set.

Scenarios:

@ Comprehensive simulation: design a velocity profile of the leading vehicle
and check the tracking performance of the controller.

@ Braking scenario: the leading vehicle will suddenly brake with the maximum
deceleration to validate the safety performance of the controller

Shang, Xu (UCSD) 2024 18 /27



Comprehensive Experiment

We first validate the control performance of robust DeeP-LCC in a
comprehensive scenario.
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Comprehensive Experiment

The robust DeeP-LCC decreases the fuel consumption especially at the

braking phase.

Table: Fuel Consumption in Comprehensive Experiment (unit: mL)

All HDVs DeeP-LCC Robust DeeP-LCC

Phase 1 14559  141.02 (| 3.14%) 135.60 (| 6.86%)
Phase 2 31477 312.95 (1 0.58%) 311.83 (| 0.94%)
Phase 3 72528 723.95 (1 0.18%) 722.88 (| 0.33%)
Phase 4 250.05  246.16 (| 4.97%) 237.89 (| 8.17%)
Total Process  1530.15  1509.6 (] 1.54%) 1493.6({ 2.39%)

Shang, Xu (UCSD)
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Braking Scenario

We then validate the safety performance of robust DeeP-LCC in the
braking scenario.

25 ——HDV » ——HDV
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(d) Large offline data set with T = 1500
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Braking Scenario

The robust DeeP-LCC provides better safety guarantee.

Table: Collision and Safety Constraint violation rate

DeeP-LCC Robust DeeP-LCC
T=500 T=1500 T =500 T =1500
Violation Rate 74% 62% 5% 0%
Emergency Rate 66% 51% 4% 0%

Violation: the CAV's spacing deviates more than 1 m from safety range.
Emergency: the CAV's spacing deviates over 5 m from safety range
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Conclusion and Future work

Conclusion: The robust formulation with relative accurate disturbance set

estimation methods
@ Provide a stronger safety guarantee.
@ Improve the control performance.
@ Allow for the applicability of a smaller data set.
Future work:
@ Learning-based estimation for future disturbances.
@ Incorporation of communication-delayed traffic data.
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Figure: Schematic of centralized and decentralized robust DeeP-LCC
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