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Stop-and-go Traffic Waves

Small perturbations of vehicle motion may progate into large periodic speed
fluctuations, which (1) lowers traffic efficiency and (2) reduces driving safety.

https://www.youtube.com/watch?v=7wm-pZp mi0
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Traffic Wave Mitigation

https://www.youtube.com/watch?v=ZZ2cWhapqpc
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Mixed Traffic System

System Setup:

The mixed traffic system consists of one connected and autonomous vehicle
(CAV) and n − 1 human-driven vehicles (HDV). All these vehicles follow a
head vehicle.

For the i-th vehicle, its position, velocity and acceleration are denoted as
pi , vi and ai . The spacing of vehicle i is si = pi−1 − pi .

Vehicle Dynamics:

HDV: ai (t) = vi (t) = Fi (si (t), ṡi (t), vi (t)).

CAV: Control input ai (t) = ui (t).
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Mixed Traffic System

Combine all dynamics of HDVs and CAVs after linearization, the system
model of mixed traffic is{

x(k + 1) = Ax(k) + Bu(k) + Hϵ(k),

y(k) = Cx(k),
(1)

where we define

x(t) = [s̃1(t), ṽ1(t), s̃2(t), ṽ2(t), . . . , s̃n(t), ṽn(t)]
T ∈ R2n,

y(t) = [ṽ1(t), ṽ2(t), . . . , ṽn(t), s̃1(t)]
T ∈ Rn+1.

The input is the acceleration of the CAV and the disturbance is the velocity error
of the preceding vehicle.

Goal: Design control input for unknown system (1) with available traffic data.
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DeePC Overview

Consider the well-known receding horizon predictive control problem with
unknown system model and initial state

min
x,u,y

t+N−1∑
k=t

(
∥y(k)∥2Q + ∥u(k)∥2R

)
subject to x(k + 1) = Ax(k) + Bu(k), (2a)

y(k) = Cx(k) + Du(k), (2b)

x(t) = xini,

u(k) ∈ U , y(k) ∈ Y,

and we only have access to

Input/output trajectory of length-T (Offline data).

The most recent past input/output sequence of length-Tini (Online data).

Data-Eanbled Predictive Control (Coulson, 2019):

1 Construct a data-driven representation for system (2).

2 Ensure the predicted trajectory satisfy the initial condition of the system.
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DeePC Overview

Lemma 1 (Fundamental Lemma)

Suppose that system (2) is controllable. Given a length-T I/O trajectory:
ud ∈ RmT , yd ∈ RpT and assume these data is rich enough, then a length-L I/O
sequence (us, ys) is a valid trajectory of (2) if and only if there exists a
g ∈ RT−L+1 such that [

HL(ud)
HL(yd)

]
g =

[
us
ys

]
.

(Markovsky et al., 2023)
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DeePC Formulation

Model Predictive Control:

min
x,u,y

t+N−1∑
k=t

(
∥y(k)− yr(k)∥2Q + ∥u(k)∥2R

)
subject to x(k + 1) = A x(k) + B u(k), k ∈ [t, t + N − 1]

y(k) = C x(k) + D u(k), k ∈ [t, t + N − 1]

x(t) = xini ,

u(k) ∈ U , y(k) ∈ Y, k ∈ [t, t + N − 1],

Data-enabled Predictive Control:

min
g,u,y

t+N−1∑
k=t

(
∥y(k)∥2Q + ∥u(k)∥2R

)

subject to


UP

YP

UF

YF

 g =


uini
yini

u
y


u ∈ U , y ∈ Y
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DeePC with Disturbance Estimation

We can treat the disturbance as another input and form the system asx(k + 1) = Ax(k) + [B H]

[
u(k)
ϵ(k)

]
= Ax(k) + B̂û(k),

y(k) = Cx(k),

The form of the DeePC becomes

min
g ,σy ,u,ϵ,y

V (u, y) + λg ||g ||22 + λy ||σy ||22

subject to


UP

EP

YP

UF

EF

YF

 g =


uini
ϵini

yini + σy

u
ϵ
y

 ,

s̃min ≤ G1y ≤ s̃max,

umin ≤ u ≤ umax,

ϵ = ϵest.
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Robust DeePC

We can estimate a potential disturbance set to robustify the problem

min
g ,σy ,u,ϵ,y

max
ϵ∈W

V (u, y) + λg ||g ||22 + λy ||σy ||22

subject to


UP

EP

YP

UF

EF

YF

 g =


uini
ϵini

yini + σy

u
ϵ
y

 ,

s̃min ≤ G1y ≤ s̃max, ∀ϵ ∈ W,

umin ≤ u ≤ umax.

min
x,t

t

subject to xTMx + dTx ≤ t, ∀ϵ ∈ W,

s̃min ≤ P1x + c1 ≤ s̃max, ∀ϵ ∈ W,

umin ≤ P2x ≤ umax.

where x = col(u, σy , ϵ) is decision variable.

Advantages:

Increase the safety
guarantee.

Decrease the required
amount of offline data.

Trade-off:

Increase the
computational cost.

An accurate
disturbance estimation
method is needed.
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Disturbance Estimation

The estimated disturbance set is modeled as an N-dimensional polytope

W = {ϵ ∈ RN |Aϵϵ ≤ bϵ},
where Aϵ = [I ;−I ], bϵ = [ϵmax;−ϵmin].

Estimation Methods:
Constant bound: the disturbance variation for the future disturbance
trajectory is close to its past trajectory.

Time-varying bound: the variation of the acceleration for the future
disturbance trajectory is close to its past trajectory.

Figure: Schematic of disturbance estimation methods
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Efficient Computations

Method I: Vertex-based. The compact polytope W can be represented as the
convex hull of its extreme points W = conv(ω1, . . . , ωnv) where nv = 2N .

min
x,t

t

subject to xTj Mxj + dTxj ≤ t, j = 1, . . . , nv, (3a)

s̃min≤P1xj + c1≤ s̃max, j = 1, . . . , nv, (3b)

umin ≤ P2x ≤ umax. (3c)

Method II: Duality-based. Change the affine constraint into its dual problem
and form the problem as a min-min problem.

min
xd,t,λ1,λ2

t

subject to pTl,dxd + bTϵ λl,1 + c1,l ≤ s̃max, (4a)

AT
ϵ λl,1 − pl,ϵ = 0, (4b)

− pTl,dxd + bTϵ λl,2 − c1,l ≤ −s̃min, (4c)

AT
ϵ λl,2 + pl,ϵ = 0, (4d)

λl,1 ≥ 0, λl,2 ≥ 0, l = 1, 2, . . . ,N, (4e)

(3a), (3c).
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Complexity with down-sampling strategy

Down-sampling Strategy: Choose one point for every Ts steps to approximate
the disturbance trajectory and perform linear interpolation.

Figure: Illustration of down-sampling strategy (Huang et al., 2023)

Table: Complexity comparison between Method I and Method II.

Decision Variables Number Constraints Number

M1 (n + 1)Tini + N + 1 2N + N · 2N+1 + 2N
M2 (n + 1)Tini + N + 1 + 4N2 2N + 2N(3N + 2)

M1 (L) (n + 1)Tini + N + 1 2nϵ + N · 2nϵ+1 + 2N
M2 (L) (n + 1)Tini + N + 1 + 4Nnϵ 2nϵ + 2N(3nϵ + 2)
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Experiment Setup

System Setup:

We consider the CAV 1 is followed by 4 HDVs, and there are three vehicles
in front of the head vehicle 0.

Figure: Simulation scenario

The length of pre-collected data sets are T = 500 for a small data set and
T = 1500 for a large data set.

Scenarios:

Comprehensive simulation: design a velocity profile of the leading vehicle
and check the tracking performance of the controller.

Braking scenario: the leading vehicle will suddenly brake with the maximum
deceleration to validate the safety performance of the controller
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Comprehensive Experiment

We first validate the control performance of robust DeeP-LCC in a
comprehensive scenario.

(a) DeeP-LCC

(b) Robust DeeP-LCC
Shang, Xu (UCSD) 2024 19 / 27



Comprehensive Experiment

The robust DeeP-LCC decreases the fuel consumption especially at the
braking phase.

Table: Fuel Consumption in Comprehensive Experiment (unit: mL)

All HDVs DeeP-LCC Robust DeeP-LCC

Phase 1 145.59 141.02 (↓ 3.14%) 135.60 (↓ 6.86%)
Phase 2 314.77 312.95 (↓ 0.58%) 311.83 (↓ 0.94%)
Phase 3 725.28 723.95 (↓ 0.18%) 722.88 (↓ 0.33%)
Phase 4 259.05 246.16 (↓ 4.97%) 237.89 (↓ 8.17%)

Total Process 1530.15 1509.6 (↓ 1.54%) 1493.6(↓ 2.39%)
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Braking Scenario

We then validate the safety performance of robust DeeP-LCC in the
braking scenario.

(c) Small offline data set with T = 500

(d) Large offline data set with T = 1500
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Braking Scenario

The robust DeeP-LCC provides better safety guarantee.

Table: Collision and Safety Constraint violation rate

DeeP-LCC Robust DeeP-LCC

T = 500 T = 1500 T = 500 T = 1500

Violation Rate 74% 62% 5% 0%
Emergency Rate 66% 51% 4% 0%

Violation: the CAV’s spacing deviates more than 1 m from safety range.
Emergency: the CAV’s spacing deviates over 5 m from safety range
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Conclusion and Future work

Conclusion: The robust formulation with relative accurate disturbance set
estimation methods

Provide a stronger safety guarantee.
Improve the control performance.
Allow for the applicability of a smaller data set.

Future work:

Learning-based estimation for future disturbances.
Incorporation of communication-delayed traffic data.

Figure: Schematic of centralized and decentralized robust DeeP-LCC
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